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Abstract

Background: This study aimed to investigate feasible gray matter microstructural biomarkers with high sensitivity
for early Alzheimer's disease (AD) detection. We propose a diffusion tensor imaging (DTI) measure, “radiality”, as an
early AD biomarker. It is the dot product of the normal vector of the cortical surface and primary diffusion direction,
which reflects the fiber orientation within the cortical column.

Methods: We analyzed neuroimages from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
including images from 78 cognitively normal (CN), 50 early mild cognitive impairment (EMCI), 34 late mild cognitive
impairment (LMCI), and 39 AD patients. We then evaluated the cortical thickness (CTh), mean diffusivity (MD), which
are conventional AD magnetic resonance imaging (MRI) biomarkers, and the amount of accumulated amyloid and
tau using positron emission tomography (PET). Radiality was projected on the gray matter surface to compare and
validate the changes with different stages alongside other neuroimage biomarkers.

Results: The results revealed decreased radiality primarily in the entorhinal, insula, frontal, and temporal cortex with
further progression of disease. In particular, radiality could delineate the difference between the CN and EMCI
groups, while the other biomarkers could not. We examined the relationship between radiality and other biomarkers to
validate its pathological evidence in AD. Overall, radiality showed a high association with conventional biomarkers.
Additional ROI analysis revealed the dynamics of AD-related changes as stages onward.

Conclusion: Radiality in cortical gray matter showed AD-specific changes and relevance with other conventional AD
biomarkers with high sensitivity. Moreover, radiality could identify the group differences seen in EMCI, representative of
changes in early AD, which supports its superiority in early diagnosis compared to that possible with conventional
biomarkers. We provide evidence of structural changes with cognitive impairment and suggest radiality as a sensitive
biomarker for identifying early AD.
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Background

Alzheimer’s disease (AD) is notorious for its long
preclinical period where various pathophysiological
changes occur before the main symptoms develop.
As the progression of AD is not completely under-
stood, early diagnosis and intervention remain chal-
lenging [1, 2]. Repetitive failures of recent drug trials
are attributed to the application of treatment to pa-
tients with relatively advanced disease [3-5]. Thus,
identification of people in the earlier stages of path-
ology is critical in clinical trials and may be promis-
ing for controlling this devastating disease.

At present, several biomarkers are used to diagnose
and monitor disease progression: amyloid and tau de-
posits based on positron emission tomography (PET)
imaging or cerebrospinal fluid (CSF) samples, volumetric
and morphologic analysis using T1-weighted magnetic
resonance imaging (MRI) and clinical assessments.
Although the results from PET and CSF screening are
promising, these interventions are more invasive than
MRIL In the search for suitable MRI biomarkers, re-
searchers have focused on characterizing early mild
cognitive impairment (EMCI) and late mild cognitive
impairment (LMCI) [6, 7]. Although the criteria for sep-
arating EMCI and LMCI are based on scores on memory
tests, biomarkers in individuals with EMCI show a con-
tinuous spectrum to those in individuals with LMCI, im-
plying that EMCI is a transitional stage of AD [8]. Thus,
evaluating sequential changes in EMCI and LMCI
should help in understanding early AD.

Diffusion tensor imaging (DTI) utilizes the diffusion of
water molecules within tissues and provides axonal
microstructural properties; thus, it is widely applied
when studying white matter integrity [9, 10]. Early AD
studies using DTI have mainly focused on the white
matter. However, since white matter changes in AD may
be the result of Wallerian degeneration, followed by neu-
rodegeneration in the gray matter [11, 12], the destruc-
tion of white matter is a less sensitive change in AD.

The idea of measuring microstructural changes in gray
matter using DTI has been demonstrated in both AD and
frontotemporal dementia [13-15]. These studies showed
that gray matter mean diffusivity (MD) is higher in patients
than in healthy controls and that MD could be a promising
imaging biomarker. However, there is a lasting notion that
increased MD could be overestimated by the CSF signal,
and this effect persists even with rigorous correction ap-
proaches, such as partial volume effects correction [16].

To overcome this problem, we adopted radiality,
which presumably reflects the integrity of tangential
cortical fibers. In an initial study of the applicability
of radiality in AD, we sought to find an association
with conventional MRI biomarkers [17]. A recent
study investigated the association between anisotropic
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diffusion and cortical structures through postmortem
diffusion MRI along with histology in multiple sclerosis
[18]. Although this study was limited to observing certain
brain regions, it provides relevant evidence to measure
cortical changes with DTL. Moreover, this parameter has
been applied to study neurodevelopment and can distin-
guish the stages of aging [19-21]. Cortical microstructural
changes are often observed with aging or neurodegenera-
tion, which can be viewed as the opposite of neurodeve-
lopment [22-25]. Thus, changes in fiber orientation may
suggest cortical alterations and could be used as a bio-
marker in neurodegenerative diseases.

In this study, we hypothesized that the radiality within
gray matter could be a microstructural measure of the
cortex and used as the early signature of AD. We per-
formed a cross-sectional surface-based cortical analysis
approach using DTI, amyloid PET, and tau PET images
to the AD continuum [17]. We evaluated whether gray
matter radiality shows: i) early mesoscopic AD-related
pathological change, and ii) complementarity with con-
ventional AD biomarkers while providing distinct infor-
mation regarding AD-related pathologies.

Methods

Demographics

Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (adniloni.usc.edu).
The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clin-
ical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.

From the ADNI database, we analyzed subjects who
underwent both MRI and PET (amyloid, AV 45 and tau,
AV 1451) including 78 cognitively normal (CN), 50
EMCI, 34 LMCI, and 39 AD individuals. Subjects were
sampled according to the following criteria: age, around
60 to 90 years old, education, 12 to 20 years, and gender-
matched within groups. To assess the AD continuum,
amyloid-negative CN and amyloid-positive EMCI, LMCI,
and AD subjects were selected. The EMCI group was
subdivided into 38 dementia non-converters (stable
EMCI) and 12 converters to assess changes in disease
progression. A total of 201 subjects’ T1 and DTI images
were gathered from the ADNI. To increase the sample
size, a multi-center approach was used, as discussed in
[13]. The amyloid positivity of subjects was determined
using whole brain PET AV45 standardized uptake value
ratio (SUVR) with a 1.11 cutoff. Table 1 shows the
demographics of the subjects used in this study; note


http://adni.loni.usc.edu/
http://www.adni-info.org

Lee et al. BMC Neurology (2020) 20:362 Page 3 of 10
Table 1 Demographics
CN (n=78) EMCI(n=50) EMC EMCI LMCI (n=34) AD (n=39) Post hoc
Non-converter  Converter
(n =38) (n=12)
Female, n (%) 42 (53.8) 19 (37.2) 14 (36.8) 541.7) 15 (44.1) 17 (43.6) -
Age (SD) (y) 727+59 747 +£53 741 £49 764 +4.7 739+£56 747 +£72 -
Education (SD) (y) 16.7+£25 152126 150+25 156 +3.1 16.1+28 154+29 -
GCDR (SD) 00 05 05 05 05 08+03 CN < EMCl = LMCI<AD
MMSE (SD) 293+15 282+12 283+ 1.1 281+1.7 276+£14 244+40 CN > EMCl = LMCI>AD
MADAS-Cog (SD) 9.7+68 136+59 13.2+50 145+49 146+48 263+ 142 CN < EMCl = LMCI<AD
Immediate recall (SD) 142+29 104 +34 105+36 99+27 64+33 38+20 CN > EMCI>LMCI>AD
Delayed recall (SD) 128+34 86+20 86+2.1 87+16 31+£27 13£16 CN > EMCI>LMCI>AD
MRI center 30/48 40/10 29/9 1N 28/6 36/3 -
Florbetapir+, n (%) 0(0) 50 (100) 38 (100) 12 (100) 34 (100) 39 (100) -
AV1451 image, n (%) 44 (68.3) 9 (14.1) 8 (21.1) 1(833) 5(7.8) 347 -

Data are n (%) or mean * SD values. There were no gender, age, or year of education intergroup differences. GCDR, MMSE, and MADAS-Cog scores in EMCI and
LMCI did not show significant differences. Analysis of variance with Tukey test was used for post hoc analysis with p < 0.05. For MRI data, two major scanners

were used: GE and SIEMENS and delineated as MRI center GE/SIEMENS

AD Alzheimer's disease, CN Cognitively normal, EMCI Early mild cognitive impairment, GCDR Global Clinical Dementia Rating, LMCI Late mild cognitive impairment,
MADAS-Cog Modified Alzheimer’s Disease Assessment Scale-Cognitive subscale, MMSE Mini Mental State Examination

that 44 CN subjects, nine EMCI subjects, five LMCI sub-
jects, and three AD subjects underwent AV1451 tau
PET imaging. An additional 28 CN subjects with amyl-
oid positivity were analyzed to identify the earliest AD
pathological changes as presented in Supp. Table 1.

Image processing

T1-weighted images were processed using FreeSurfer
package v6.0 (http://surfer.nmr.mgh.harvard.edu) as pre-
viously reported in [13]. Cortical thickness (CTh) maps
were registered to the FreeSurfer average sphere using
spherical registration for group comparison. DTI and
PET images were registered with respect to T1 images
using a boundary-based algorithm for further processing.
DTI images were processed using the FSL package as
follows: eddy current correction, rotate gradient vectors
from the results of eddy correction, and tensor fitting to
produce the MD map and primary eigenvector map.
DTI metrics were further processed to avoid partial vol-
ume effects following Koo et al. [26]. PET images were
partial volume corrected using mri_gtmpvc which is
built into the FreeSurfer package. PET images were nor-
malized by mean signal from the whole cerebellum and
converted to SUVR for amyloid and tau PET, AV45, and
AV1451, respectively. The images were then boundary-
based registered to corresponding T1 structural images.
To avoid any partial volume effects, the center parts of
the cortical column were sampled for surface analysis.
Lastly, CTh was smoothed with a 10-mm full width half
maximum Gaussian kernel, while other modalities were

smoothed with a 15-mm kernel. Figure 1 shows an over-
all schematic of the process.

Calculation of radiality

A surface normal vector was obtained from the indi-
vidual gray matter surface to define the cortical orien-
tation. FreeSurfer represents the surface in triangular
meshes, and the surface normal vector can be com-
puted using the cross-product between edges. The
vertex-wise dot product between the primary diffusion
direction, primary eigenvector of the diffusion tensor,
and the surface normal vector was quantified as a
radiality index, r, where v represents the surface nor-
mal vector and e; represents the primary diffusion
direction [22].

r = |f/né1|

It ranges from O to 1, where r=0 indicates tangential
diffusion and r=1 indicates radial diffusion to the cor-
tex. The subject’s principal eigenvector map was pro-
jected onto the individual surface reconstruction to
calculate vertex-wise radiality, as discussed in [22].

Cutoff analysis

To further test the feasibility of radiality as an AD bio-
marker, we performed cutoff analysis using receiver op-
erating characteristic graphs to distinguish CN from
different AD stages, as shown in Supp. Table 2. The fea-
ture used was the mean radiality within the cluster ob-
tained from the CN vs. EMCI group comparison. By
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Fig. 1 Overall scheme for surface projection analysis. DTI and PET images were boundary-based registered to the T1 image and projected to the
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varying the cutoff, we sought to find the cost-effective
point where it minimizes the difference between sensi-
tivity and specificity [27].

Statistical analysis

We first compared the differences between groups for
radiality, CTh, MD, AV45, and AV1451 using a general
linear model, which is available in FreeSurfer. The re-
sults were cluster-wise corrected for a family-wise error
(FWE)-corrected p-value < 0.05.

To test the associations between radiality and other
neuroimaging biomarkers, we calculated a set of vertex-
wise partial correlations with radiality as the dependent
variable and CTh, MD, AV45, and AV1451 as the inde-
pendent variable. Age, gender, years of education, and
MRI center were set as covariates for cluster analyses. A
permutation test was applied to account for multiple
comparisons using a Monte Carlo simulation with 10,
000 repeats, which is a built-in function of FreeSurfer.

To test the linear relationship between radiality and
other neuroimaging biomarkers, we quantified mean
metrics within AD-specific ROIs. ROIs include the
entorhinal, fusiform, insula, inferior, middle, and su-
perior temporal cortex. Mean metrics within ROIs
were plotted in box and whisker plots and are pre-
sented in Fig. 5e and Fig. 6. Significant differences be-
tween groups were tested using one-way analysis of
variance (ANOVA).

Results

Group comparison along AD continuum

We first compared radiality, CTh, and MD differences
between groups, i.e., CN vs. EMCI, CN vs. LMCI, and

CN vs. AD. The results were cluster-wise corrected for a
FWE-corrected p <0.05. Figure 2 shows the significant
group different clusters ranging from a p-value of 0.05
to 10~ °. Only radiality could delineate the difference be-
tween EMCI and CN. Compared to CN, all groups
showed decreased radiality, decreased CTh, and in-
creased MD. There was no group difference in radiality
between EMCI and LMCL

EMCI non-converter versus converter

We compared radiality between CN and EMCI non-
converter, CN and EMCI converter, and EMCI non-
converter vs. converter. The results were cluster-wise
corrected for a FWE-corrected p < 0.05. Figure 3 shows
significant group different clusters ranging from a p-
value of 0.05 to 10~ °. Compared to CN, the EMCI non-
converter showed decreased radiality in the left superior
frontal and superior parietal cortices. The EMCI con-
verter showed decreased radiality mainly in the bilateral
insula cortex. Direct comparison between EMCI non-
converter and converter delineated the bilateral insular,
left superior frontal, and right precentral cortex.

Partial correlation between radiality and other imaging
biomarkers

We then found a vertex-wise correlation between radi-
ality and other imaging biomarkers, as shown in Fig. 4.
CTh showed mostly positive correlations with de-
crease in cortical thickness accompanied by a decrease
in radiality. MD mostly negatively correlated with an
increase in MD accompanied by a decrease in radial-
ity. Amyloid and tau levels negatively correlated with
radiality.
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CN vs LMCI

CTH

MD

Fig. 2 Group differences in radiality, cortical thickness, and mean diffusivity. From left to right: CN vs. EMCI, CN vs. LMCI, and CN vs. AD. The blue
cluster shows a decrease in metrics and the red cluster shows an increase in metrics. All clusters were FWE corrected for p < 0.05. Color bar
indicates p-value interval of 0.05 to 10”°

for AV45 was R = — 0.490, and that for AV1451 was R =
- 0.412 with radiality.

Correlations between radiality and other imaging
biomarkers
In order to find progressive changes in radiality reflect-

ive of disease progression, an AD-specific ROI mask was
used to calculate mean biomarker data. Each subject’s
mean data were scatter-plotted and used to calculate the
Pearson correlation, as shown in Fig. 5. The correlation
for CTh was R = 0.641, that for MD was R = - 0.677, that

Radiality dynamics from AD-specific ROls

To find generative changes in radiality during disease
progression, the mean radiality in AD ROIs was calcu-
lated for direct comparison between groups. Radiality
within AD-specific ROIs was plotted in a box and

CN vs EMCI Non-converter

Radiality

CN vs EMCI Converter

Non-converter vs Converter

Fig. 3 Differences in radiality between EMCI non-converter and converter. From left to right: CN vs. EMCI non-converter, CN vs. EMCI converter,
and non-converter vs. converter. The blue cluster shows a decrease in metrics and the red cluster shows an increase in metrics. All clusters were
FWE corrected for p < 0.05. Color bar indicates p-value interval of 0.05 to 10 °
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Fig. 4 Partial correlation between radiality and image biomarkers. The red cluster shows a positive correlation with radiality, and the blue cluster
shows a negative correlation. Cortical thickness showed positive correlations, and mean diffusivity, AV45, and AV1451 showed negative

whisker plot, as shown in Fig. 6. The results showed de-
creasing radiality with disease progression. Significance
was tested with one-way ANOVA with p-values <0.05,
0.01, and 0.001. The insula, middle, and superior tem-
poral cortex showed the most radiality reduction with
disease progression.

Cutoff analysis using radiality

Classification of CN vs. EMCI showed 70.5% accuracy
with 70.2% sensitivity, 72.7% specificity, and 0.766 AUC.
Subsequent analysis to distinguish between CN and
LMCI, MCI group (EMCI+LMCI), AD, and patient
group (EMCI+LMCI+AD) also showed similar results to
those presented in Supp. Table 2.

Discussion
In this study, we investigated the early features of EMCI
using cortical radiality, which reflects mesoscopic struc-
tural changes. By leveraging radiality in the gray matter,
we could detect the changes in EMCI that were not de-
tected using conventional MRI biomarkers. We found
progressively larger regions of decreased radiality as the
disease progressed, starting from the medial temporal cor-
tex in EMCI to the whole brain in AD. However, CTh or
MD did not show significant differences between CN and
EMCI. Furthermore, the radiality results from CN and
EMCI non-converter showed similar patterns to those of
CN amyloid-negative and -positive (Supp. Figure 1). Based
on our results, the microstructural gray matter changes in
the bilateral insular cortex are associated with disease pro-
gression as seen in the CN and EMCI converter results.
We investigated the relationship between radiality and
other imaging measures. The association between

radiality and CTh showed a strong positive correlation
in various regions of the brain, as shown in Fig. 4. It is
clear that a higher CTh indicates a deeper cortical struc-
ture, and fiber orientation tends to have a radial orienta-
tion. Cortical depth profile analysis showed that thicker
cortex was related to larger radiality [28]. In addition,
MD showed a strong negative correlation in the tem-
poral, parietal, and frontal cortices. Radiality may be sen-
sitive to CTh but also reflects microstructural features.
With AV45 and AV1451, radiality showed an association
that widely overlapped with both CTh and MD. Thus,
radiality may also reflect changes due to pathologic pro-
tein accumulation within the cortex.

Although microstructural changes associated with
radiality are unclear, one plausible feature is the
disorganization of tangential cortical fibers. It has been
reported that tangential cortical fibers develop during
neurodevelopment and aging [22]. There are several
events that lead to an increase in tangentially oriented fi-
bers, including dendritic elaboration [29], formation of
local circuits [30], expansion of thalamo-cortical fibers
[31], and disappearance of radial glia [32, 33]. A decrease
in radiality may be contrary to those of neurodevelop-
ment. For instance, synaptic loss, neuronal soma changes
and neurite disorganization, along with neuronal loss,
may lead to a decrease in radiality. These changes may
be concurrent with the net loss of macromolecules that
affect diffusivity, increasing free water in the extracellu-
lar space. However, radiality provides evidence of neur-
onal density that explains concurrent cortical atrophy.
Furthermore, accumulation of amyloid or tau proteins
may also participate in the disruption of the microstruc-
ture. Given that radiality can identify EMCI, we can
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further speculate that these microstructural changes
occur in the earlier stages of AD, which are not apparent
in macroscopic investigation.

To test the sensitivity of radiality, we sought to identify
the earliest stage of AD. Interestingly, our CN vs. EMCI
radiality analysis did not show a biphasic trajectory, as

discussed in a previous work [34]. Thus, we conducted
an additional analysis on amyloid-negative CN and
amyloid-positive CN (Supp Fig. 1). We observed biphasic
behavior for CTh and MD, where biomarkers showed
opposite directions of changes. While CTh increased
and MD decreased, radiality showed a monotonous
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decrease in amyloid-positive CN. This distinct behavior
of radiality could characterize the changes in EMCI,
while CTh and MD could not. Both the CTh increase
and MD decrease in the early stage of AD were thought
to be caused by an amyloid-induced inflammatory re-
sponse [13]. However, radiality seems to decrease when-
ever there are microstructural changes in the tissue. In a
preterm study, the occipital cortex showed a decrease in
radiality as in early development [19-21]. In the case of
multiple sclerosis, decreased radiality was observed in the
dorsolateral prefrontal cortex, Heschl’s gyrus, and primary
visual cortex, possibly due to cortical alterations [18].

We performed a simple cutoff binary classification
analysis to assess the diagnostic accuracy of radiality.
The target mask was obtained from the group compari-
son result of CN versus EMCI, and the individual mean
radiality within the mask was used as a classification fea-
ture. With varying cutoff values, the model showed
70.5% accuracy with 0.766 AUC to differentiate CN and
EMCI, 67.9% with 0.757 AUC for CN and LMCI, 70.5%
with 0.766 AUC for CN and MCI (EMCI+LMCI), and
78.6% with 0.867 AUC to CN and AD, as presented in
Supp. Table 2. The results were comparable to those of
previous studies. A recent study that adopted a logistic
regression model with neurite density index, orientation
dispersion index, and CTh as features reported 0.72
AUC for CN and MCI and 0.91 AUC for CN and AD
[35]. Other studies employing whole MD and gray mat-
ter map reported 79.6% accuracy with 0.84 AUC for CN
and MCI and 93.5% with 0.94 AUC to CN and AD [36],
76% with 0.83 AUC for NC and AD [37].

There were several limitations to the current study.
First, the relatively poor resolution of DTI compared to
structural T1 images could lead to inaccurate results. Al-
though surface analysis was employed to mitigate registra-
tion or segregation errors, a higher resolution DTI would
be needed to observe precise cortical changes. Second, the
use of multi-protocol DTI images could influence the ob-
servation of progressive changes in MCIL. We sought to
control for age, gender, years of education, and MRI cen-
ter between the group while applying harmonization to
minimize the variation between subjects [38]. Third, the
number of subjects who underwent tau PET imaging was
not enough to identify any relationship with tau path-
ology. In order to focus on progressive changes, not only
showing a relationship with amyloid but also with tau is
an important aspect [39]. However, several subjects in this
study underwent screening only once without follow-up
or only MRI data were available.

Conclusions

In conclusion, we investigated the cortical changes in EMCI
using structural MRI, DTI, and PET imaging markers. Only
radiality could delineate the changes in EMCI while cortical
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thickness and MD could not. In addition, radiality changes
in the frontal cortex as well as amyloid deposits in the con-
tinuum. These results indicate that the multimodal ap-
proach, atrophy and microstructure, may illuminate early
changes in AD. However, further studies are needed to sup-
port the relationship between alterations in cortical struc-
ture and diffusion orientation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512883-020-01939-2.

Additional file 1: Supplementary Table 1. Demographics of CN
amyloid positivity analysis. Supplementary Table 2. Results of cutoff
analysis. Supplementary Fig. 1. Comparison of amyloid-negative CN
and amyloid-positive CN. Group differences in radiality, cortical thickness,
and mean diffusivity from CN amyloid-negative and -positive. Radiality
showed a decrease in the postcentral cortex, CTh showed an increase in
the lingual cortex, and MD showed a decrease in the postcentral cortex.
Color bar indicates p-value interval of 0.05 to 10" °.

Abbreviations

AD: Alzheimer’s disease; ADNI: Alzheimer's Disease Neuroimaging Initiative;
CN: Cognitively normal; CSF: Cerebrospinal fluid; CTh: Cortical thickness;
DTI: Diffusion tensor imaging; EMCI: Early mild cognitive impairment;
GCDR: Global clinical dementia ratings; LMCI: Late mild cognitive
impairment; MADAS-Cog: Modified Alzheimer's disease Assessment Scale
cognitive subscale; MD: Mean diffusivity; MMSE: Mini Mental State
Examination; MRI: Magnetic resonance imaging; PET: Positron emission
tomography; ROI: Region of interest; SUVR: Standardized uptake value ratio

Acknowledgements

Data collection and designing for this project was funded by the Alzheimer's
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant
U0T AG024904) and DOD ADNI (Department of Defense award number
WB81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer's Association;
Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc,
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc,; Eisai Inc,; Elan Pharma-
ceuticals, Inc; Eli Lilly and Company; Eurolmmun; F. Hoffmann-La Roche Ltd.
and its affiliated company Genentech, Inc,; Fujirebio; GE Healthcare; IXICO
Ltd,; Janssen Alzheimer Immunotherapy Research & Development, LLC;
Johnson & Johnson Pharmaceutical Research & Development LLC,; Lumosity;
Lundbeck; Merck & Co., Inc; Meso Scale Diagnostics, LLC,; NeuroRx Research;
Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc;
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is providing funds
to support ADNI clinical sites in Canada. Private sector contributions are facil-
itated by the Foundation for the National Institutes of Health (www.fnih.org).
The grantee organization is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer’s Disease Coopera-
tive Study at the University of California, San Diego. ADNI data are dissemi-
nated by the Laboratory for Neuro Imaging at the University of Southern
California.

Data used in preparation of this article were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database (adniloni.usc.edu). As such,
the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adniloni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf

Authors’ contributions

PL, YJ, and HK contributed to the study conception and design. Material
preparation, data collection and analysis were performed by PL. The first
draft of the manuscript was written by PL. YJ and HK commented on


https://doi.org/10.1186/s12883-020-01939-2
https://doi.org/10.1186/s12883-020-01939-2
http://www.fnih.org
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Lee et al. BMC Neurology (2020) 20:362

previous versions of the manuscript. The authors read and approved the
final manuscript. Data used in preparation of this article were obtained from
the ADNI database. As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report.

Funding

This work was supported in part by grant HI14C2768 from the Korea Health
Technology Research and Development Project through the Korea Health
Industry Development Institute, funded by the Ministry of Health & Welfare,
Republic of Korea, and in part by the Bio & Medical Technology
Development Program (2016941946) through the National Research
Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future
Planning. All these funds provided computing resources for this study but
did not participate in the design of the study and collection, analysis and
interpretation of data in writing the manuscript.

Availability of data and materials

The MRI and PET data were downloaded from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adniloni.usc.edu/).
Application for access to the ADNI data can be submitted by anyone at
http://adniloni.usc.edu/data-samples/access-data/. The process includes
completion of an online application form and acceptance of Data Use
Agreement.

Ethics approval and consent to participate

The institutional review boards of all participating ADNI sites reviewed and
approved the data collection protocol provided by ADNI. List of ethics
committee can be found in the supplementary information. For up-to-date
information, see www.adni-info.org. Upon accessing the database, we have
received administrative approval for access to the ADNI database.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Bio and Brain Engineering, Korea Advanced Institute of
Science and Technology, Daehak-ro 291, Yuseong-gu, Daejeon 34141,
Republic of Korea. %Kl for Health Science and Technology, Korea Advanced
Institute of Science and Technology, Daejeon, Republic of Korea. *Graduate
School of Medical Science and Engineering, Korea Advanced Institute of
Science and Technology, Daejeon, Republic of Korea.

Received: 10 February 2020 Accepted: 23 September 2020
Published online: 02 October 2020

References

1. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al.
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological
cascade. Lancet Neurol. 2010;9(1):119-28. https://doi.org/10.1016/51474-
4422(09)70299-6 PMID 20083042.

2. Shim YS, Morris JC. Biomarkers predicting Alzheimer's disease in cognitively
normal aging. J Clin Neurol. 2011;7(2):60-8. https://doi.org/10.3988/jcn.2011.
7.2.60 PMID 21779293.

3. Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development
pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014,6(4):37.
https://doi.org/10.1186/alzrt269 PMID 25024750.

4. Anderson RM, Hadjichrysanthou C, Evans S, Wong MM. Why do so many
clinical trials of therapies for Alzheimer's disease fail? Lancet. 2017;
390(10110):2327-9. https://doi.org/10.1016/S0140-6736(17)32399-1 PMID
29185425.

5. Schott JM, Aisen PS, Cummings JL, Howard RJ, Fox NC. Unsuccessful trials of
therapies for Alzheimer's disease. Lancet. 2019;393(10166):29. https://doi.org/
10.1016/50140-6736(18)31896-8 PMID 30614456.

6. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, et al.
Clinical core of the Alzheimer's disease neuroimaging initiative: progress
and plans. Alzheimers Dement. 2010,6(3):239-46. https://doi.org/10.1016/j.
jalz.2010.03.006 PMID 20451872.

11.

20.

22.

24.

25.

Page 9 of 10

Weiner MW, Aisen PS, Jack CR Jr, Jagust WJ, Trojanowski JQ, Shaw L, et al.
The Alzheimer's Disease Neuroimaging Initiative: progress re-port and future
plans. Alzheimers Dement. 2010;6(3):202-11.e7. https://doi.org/10.1016/jjalz.
2010.03.007 PMID 20451868.

Qiu'Y, Li L, Zhou TY, Lu W, Alzheimer's Disease Neuroimaging Initiative.
Alzheimer’s disease progression model based on integrated biomarkers and
clinical measures. Acta Pharmacol Sin. 2014;35(9):1111-20. https://doi.org/10.
1038/aps.2014.57 PMID 25088003.

Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and
imaging. Biophys J. 1994,66(1):259-67. https://doi.org/10.1016/50006-
3495(94)80775-1 PMID 8130344.

Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion
anisotropy. Magn Reson Med. 1996;36(6):893-906. https://doi.org/10.1002/
mrm.1910360612 PMID 8946355.

Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M. Quantification of
brain gray matter damage in different ms phenotypes by use of diffusion
tensor MR imaging. AJNR Am J Neuroradiol. 2002;23(6):985-8 PMID
12063230.

Coleman MP, Freeman MR. Wallerian degeneration, wld(s), and nmnat.
Annu Rev Neurosci. 2010;33:245-67. https://doi.org/10.1146/annurev-neuro-
060909-153248 PMID 20345246.

Montal V, Vilaplana E, Alcolea D, Pegueroles J, Pasternak O, Gonzélez-Ortiz S,
et al. Cortical microstructural changes along the Alzheimer's disease
continuum. Alzheimers Dement. 2018;14(3):340-51. https://doi.org/10.1016/j.
jalz.2017.09.013 PMID 29080407.

llan-Gala |, Montal V, Borrego-Ecija S, et al. Cortical microstructure in the
behavioural variant of frontotemporal dementia: looking beyond atrophy.
Brain. 2019;142(4):1121-33. https://doi.org/10.1093/brain/awz031 PMID
30906945.

Lee P, Ryoo H, Park J, Jeong Y, Alzheimer's Disease Neuroimaging Initiative.
Morphological and microstructural changes of the hippocampus in early
MCI: a study utilizing the Alzheimer's Disease Neuroimaging Initiative
database. J Clin Neurol. 2017;13(2):144-54. https://doi.org/10.3988/jcn.2017.
13.2.144 PMID 28176504.

Henf J, Grothe MJ, Brueggen K, Teipel S, Dyrba M. Mean diffusivity in
cortical gray matter in Alzheimer's disease: the importance of partial volume
correction. Neurolmage Clin. 2018;17:579-86. https://doi.org/10.1016/j.nicl.
2017.10.005 PMID 29201644.

Lee P, Kim HR, Jeong Y. Disruption of gray matter microstructure in
Alzheimer’s disease continuum using fiber orientation international
conference of Korean dementia association. Vol. 133; 2019. p. FP-0007.
McKavanagh R, Torso M, Jenkinson M, Kolasinski J, Stagg CJ, Esiri MM, et al.
Relating diffusion tensor imaging measurements to microstructural
quantities in the cerebral cortex in multiple sclerosis. Hum Brain Mapp.
2019;40(15):4417-31. https://doi.org/10.1002/hbm.24711 PMID 31355989.
Eaton-Rosen Z, Scherrer B, Melbourne A, Ourselin S, Neil JJ, Warfield SK.
Investigating the maturation of microstructure and radial orientation in the
preterm human cortex with diffusion MRI. Neuroimage. 2017;162:65-72.
https://doi.org/10.1016/j.neuroimage.2017.08.013 PMID 28801253.

Kroenke CD. Using diffusion anisotropy to study cerebral cortical gray
matter development. J Magn Reson. 2018;292:106-16. https.//doi.org/10.
1016/jjmr.2018.04.011 PMID 29705039.

Dean DC lll, O'Muircheartaigh J, Dirks H, Travers BG, Adluru N, Alexander AL,
et al. Mapping an index of the myelin g-ratio in infants using magnetic
resonance imaging. Neuroimage. 2016;132:225-37. https://doi.org/10.1016/].
neuroimage.2016.02.040 PMID 26908314.

McNab JA, Polimeni JR, Wang R, Augustinack JC, Fujimoto K, Stevens A,

et al. Surface based analysis of diffusion orientation for identifying
architectonic domains in the in vivo human cortex. Neurolmage. 2013;69:
87-100. https://doi.org/10.1016/j.neuroimage.2012.11.065 PMID 23247190.
Fukutomi H, Glasser MF, Zhang H, Autio JA, Coalson TS, Okada T, et al.
Neurite imaging reveals microstructural variations in the human cerebral
cortical gray matter. Neuroimage. 2018;182:488-99. https.//doi.org/10.1016/j.
neuroimage.2018.02.017 PMID 29448073.

Wu D, Reisinger D, Xu J, Fatemi SA, van Zijl PC, Mori S, et al. Localized
diffusion magnetic resonance micro-imaging of the live mouse brain.
Neuroimage. 2014;91:12-20. https://doi.org/10.1016/j.neuroimage.2014.01.
014 PMID 24440780.

Szczepankiewicz F, Lasi¢ S, van Westen D, Sundgren PC, Englund E, Westin
CF, et al. Quantification of microscopic diffusion anisotropy disentangles
effects of orientation dispersion from microstructure: applications in healthy


http://adni.loni.usc.edu/
http://adni.loni.usc.edu/data-samples/access-data/
http://www.adni-info.org
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.3988/jcn.2011.7.2.60
https://doi.org/10.3988/jcn.2011.7.2.60
https://doi.org/10.1186/alzrt269
https://doi.org/10.1016/S0140-6736(17)32399-1
https://doi.org/10.1016/S0140-6736(18)31896-8
https://doi.org/10.1016/S0140-6736(18)31896-8
https://doi.org/10.1016/j.jalz.2010.03.006
https://doi.org/10.1016/j.jalz.2010.03.006
https://doi.org/10.1016/j.jalz.2010.03.007
https://doi.org/10.1016/j.jalz.2010.03.007
https://doi.org/10.1038/aps.2014.57
https://doi.org/10.1038/aps.2014.57
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1002/mrm.1910360612
https://doi.org/10.1002/mrm.1910360612
https://doi.org/10.1146/annurev-neuro-060909-153248
https://doi.org/10.1146/annurev-neuro-060909-153248
https://doi.org/10.1016/j.jalz.2017.09.013
https://doi.org/10.1016/j.jalz.2017.09.013
https://doi.org/10.1093/brain/awz031
https://doi.org/10.3988/jcn.2017.13.2.144
https://doi.org/10.3988/jcn.2017.13.2.144
https://doi.org/10.1016/j.nicl.2017.10.005
https://doi.org/10.1016/j.nicl.2017.10.005
https://doi.org/10.1002/hbm.24711
https://doi.org/10.1016/j.neuroimage.2017.08.013
https://doi.org/10.1016/j.jmr.2018.04.011
https://doi.org/10.1016/j.jmr.2018.04.011
https://doi.org/10.1016/j.neuroimage.2016.02.040
https://doi.org/10.1016/j.neuroimage.2016.02.040
https://doi.org/10.1016/j.neuroimage.2012.11.065
https://doi.org/10.1016/j.neuroimage.2018.02.017
https://doi.org/10.1016/j.neuroimage.2018.02.017
https://doi.org/10.1016/j.neuroimage.2014.01.014
https://doi.org/10.1016/j.neuroimage.2014.01.014

Lee et al. BMC Neurology

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

(2020) 20:362

volunteers and in brain tumors. Neuroimage. 2015;104:241-52. https://doi.
0rg/10.1016/j.neuroimage.2014.09.057 PMID 25284306.

Koo BB, Hua N, Choi CH, Ronen |, Lee JM, Kim DS. A framework to analyze
partial volume effect on gray matter mean diffusivity measurements.
Neuroimage. 2009;44(1):136-44. https://doi.org/10.1016/j.neuroimage.2008.
07.064 PMID 18775785.

Cardillo G. ROC curve: compute a receiver operating characteristics curve.
GitHub; 2020. Available from: https://github.com/dnafinder/roc.

Truong TK, Guidon A, Song AW. Cortical depth dependence of the diffusion
anisotropy in the human cortical gray matter in vivo. PLoS One. 2014;9(3):
€91424. https://doi.org/10.1371/journal.pone.0091424 PMID 24608869.
Marin-Padilla M. Ontogenesis of the pyramidal cell of the mammalian
neocortex and developmental cytoarchitectonics: a unifying theory. J Comp
Neurol. 1992;321(2):223-40. https://doi.org/10.1002/cne.903210205 PMID
1500541.

Callaway EM, Katz LC. Emergence and refinement of clustered horizontal
connections in cat striate cortex. J Neurosci. 1990;10(4):1134-53. https://doi.
0rg/10.1523/JNEUROSCI.10-04-01134.1990 PMID 2329372.

Ghosh A, Shatz CJ. A role for subplate neurons in the patterning of
connections from thalamus to neocortex. Development. 1993;117(3):1031-
47 PMID 8325233.

Rivkin MJ, Flax J, Mozell R, Osathanondh R, Volpe JJ, Villa-Komaroff L.
Oligodendroglial development in human fetal cerebrum. Ann Neurol. 1995;
38(1):92-101. https://doi.org/10.1002/ana.410380116 PMID 7611731.

Hardy RJ, Friedrich VL Jr. Oligodendrocyte progenitors are generated
throughout the embryonic mouse brain, but differentiate in restricted foci.
Development. 1996;122(7):2059-69 PMID 8681787.

Pegueroles J, Vilaplana E, Montal V, Sampedro F, Alcolea D, Carmona-iragui
M, et al. Alzheimer's disease neuroimaging initiative. Longitudinal brain
structural changes in preclinical Alzheimer disease. Alzheimers Dement.
2017;13(5):499-509. https;//doi.org/10.1016/}jalz.2016.08.010 PMID 27693189.
Vogt NM, Hunt JF, Adluru N, Dean DC, Johnson SC, Asthana S, et al. Cortical
microstructural alterations in mild cognitive impairment and Alzheimer's
disease dementia. Cereb Cortex. 2020;30(5):2948-60. https://doi.org/10.1093/
cercor/bhz286 PMID 31833550.

Marzban EN, Eldeib AM, Yassine IA, Kadah YM, Alzheimer's Disease
Neurodegenerative Initiative, for the Alzheimer's Disease Neurodegenerative
Initiative. Alzheimer's disease diagnosis from diffusion tensor images using
convolutional neural networks. PLoS One. 2020;15(3):20230409. https://doi.
0org/10.1371/journal.pone.0230409 PMID 32208428.

Wen J, Samper-Gonzélez J, Bottani S, Routier A, Burgos N, Jacquemont T,

et al. Reproducible evaluation of diffusion MRI features for automatic
classification of patients with Alzheimer's disease. Neuroinformatics. 2020.
https://doi.org/10.1007/512021-020-09469-5 PMID 32524428,

Fortin JP, Parker D, Tung B, Watanabe T, Elliott MA, Ruparel K, et al.
Harmonization of multi-site diffusion tensor imaging data. Neuroimage.
2017;161:149-70. https://doi.org/10.1016/j.neuroimage.2017.08.047 PMID
28826946.

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al.
NIA-AA research framework: toward a biological definition of Alzheimer's
disease. Alzheimers Dement. 2018;14(4):535-62. https://doi.org/10.1016/jjalz.
2018.02.018 PMID 29653606.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 10 of 10

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://doi.org/10.1016/j.neuroimage.2014.09.057
https://doi.org/10.1016/j.neuroimage.2014.09.057
https://doi.org/10.1016/j.neuroimage.2008.07.064
https://doi.org/10.1016/j.neuroimage.2008.07.064
https://github.com/dnafinder/roc
https://doi.org/10.1371/journal.pone.0091424
https://doi.org/10.1002/cne.903210205
https://doi.org/10.1523/JNEUROSCI.10-04-01134.1990
https://doi.org/10.1523/JNEUROSCI.10-04-01134.1990
https://doi.org/10.1002/ana.410380116
https://doi.org/10.1016/j.jalz.2016.08.010
https://doi.org/10.1093/cercor/bhz286
https://doi.org/10.1093/cercor/bhz286
https://doi.org/10.1371/journal.pone.0230409
https://doi.org/10.1371/journal.pone.0230409
https://doi.org/10.1007/s12021-020-09469-5
https://doi.org/10.1016/j.neuroimage.2017.08.047
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.018

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Demographics
	Image processing
	Calculation of radiality
	Cutoff analysis
	Statistical analysis

	Results
	Group comparison along AD continuum
	EMCI non-converter versus converter
	Partial correlation between radiality and other imaging biomarkers
	Correlations between radiality and other imaging biomarkers
	Radiality dynamics from AD-specific ROIs
	Cutoff analysis using radiality

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

